INTERNATIONAL A LEVEL

Statistics 3 Solution Bank

Exercise 4B

1 a Let X be the random discrete variable $X \sim Po(3)$ and let T denote the sum of the 10 sample observations, so $T \sim Po(10 \times 3)$, i.e. $T \sim Po(30)$

If the sample mean = 2.5, then $T = 10 \times 2.5 = 25$. So the probability that the sample mean is less than 25 is $P(T \le 25)$

By calculation $P(T \le 25) = 0.2084 (4 \text{ d.p.})$

b By the central limit theorem, $\overline{X} \approx -N\left(3,\frac{3}{10}\right)$, i.e. $X \approx -N(3,0.3)$

Using a calculator, $P(\overline{X} \leq 2.5) = 0.1807$ (4 d.p.)

The two answers are not very close. This is because the estimate found in part \mathbf{b} is not very accurate as the sample size is too small.

2 $X \sim B(10, 0.2)$

 $E(X) = np = 10 \times 0.2 = 2$ Var(X) = $np(1-p) = 2 \times 0.8 = 1.6$

By the central limit theorem $\overline{X} \approx N\left(2, \frac{1.6}{20}\right)$, i.e. $\overline{X} \approx N(2, 0.8)$

$$P(\bar{X} \leq 2.4) \approx 0.9214 \ (4 \ d.p.)$$

- **3** a Let *X* be the number of heads thrown in 15 trials by one student, then $X \sim B(15,0.25)$ E(X) = np = 3.75
 - **b** Var(X) = np(p-1) = 2.8125

By the central limit theorem $\overline{X} \approx N\left(3.75, \frac{2.8125}{20}\right)$, i.e. $\overline{X} \approx N(3.75, 0.1406)$

Normalising gives

$$P(\overline{X} \leq 4) \approx 0.7475 \ (4 \ d.p.)$$

- 4 a Let X be the number of thunderstorms hitting the town each month, then $X \sim Po(3)$ $P(X = 4) = \frac{e^{-3} 3^4}{4!} = 0.1680 (4 \text{ d.p.})$
 - **b** E(X) = Var(X) = 3By the central limit theorem $\overline{X} \approx -N\left(3, \frac{3}{12}\right)$, i.e. $\overline{X} \approx -N(3, 0.25)$ $P(\overline{X} \leq 2.5) \approx 0.1587 \ (4 \text{ d.p.})$

Statistics 3 Solution Bank

5
$$E(X) = \frac{a+b}{2}$$

 $= \frac{(a-3)+(3a+5)}{2}$
 $= 2a+1$
 $Var(X) = \frac{1}{12}(b-a)^{2}$
 $= \frac{1}{12}[(3a+5)-(a-3)]^{2}$
 $= \frac{1}{12}(2a+8)^{2}$
 $= \frac{4}{12}(a+4)^{2}$
 $= \frac{(a+4)^{2}}{3}$

Therefore:

$$X \sim N\left(2a+1, \frac{\left(a+4\right)^2}{3}\right)$$
$$X \sim N\left(2a+1, \frac{\left(a+4\right)^2}{120}\right)$$

6 a Let the discrete random variable C be the number of calls received by the telephonist in the fiveminute period before her break, then $C \sim Po(10)$. Let T be the total number of calls received in this period for the 30 days the telephonist records the calls, then $T = 30\overline{C}$

By the central limit theorem
$$\overline{C} \approx N\left(10, \frac{10}{30}\right)$$

 $P(T > 350) = P\left(\overline{C} > \frac{350}{30}\right) = 1 - P\left(\overline{C} < \frac{350}{30}\right) \approx 1 - 0.9981 = 0.0019 \text{ (4 d.p.)}$

b
$$P(C < 9) \approx 0.0416 (4 \text{ d.p.})$$