INTERNATIONAL A LEVEL

Statistics 3

Exercise 4B

1 a Let X be the random discrete variable $X \sim \operatorname{Po}(3)$ and let T denote the sum of the 10 sample observations, so $T \sim \operatorname{Po}(10 \times 3)$, i.e. $T \sim \operatorname{Po}(30)$

If the sample mean $=2.5$, then $T=10 \times 2.5=25$. So the probability that the sample mean is less than 25 is $\mathrm{P}(T \leqslant 25)$

By calculation $\mathrm{P}(T \leqslant 25)=0.2084$ (4 d.p.)
b By the central limit theorem, $\bar{X} \approx \sim \mathrm{~N}\left(3, \frac{3}{10}\right)$, i.e. $X \approx \sim \mathrm{~N}(3,0.3)$
Using a calculator, $\mathrm{P}(\bar{X} \leqslant 2.5)=0.1807$ (4 d.p.)
The two answers are not very close. This is because the estimate found in part \mathbf{b} is not very accurate as the sample size is too small.
$2 X \sim \mathrm{~B}(10,0.2)$
$\mathrm{E}(X)=n p=10 \times 0.2=2$
$\operatorname{Var}(X)=n p(1-p)=2 \times 0.8=1.6$
By the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(2, \frac{1.6}{20}\right)$, i.e. $\bar{X} \approx \sim \mathrm{~N}(2,0.8)$
$\mathrm{P}(\bar{X} \leqslant 2.4) \approx 0.9214$ (4 d.p.)

3 a Let X be the number of heads thrown in 15 trials by one student, then $X \sim \mathrm{~B}(15,0.25)$
$\mathrm{E}(X)=n p=3.75$
b $\operatorname{Var}(X)=n p(p-1)=2.8125$
By the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(3.75, \frac{2.8125}{20}\right)$, i.e. $\bar{X} \approx \sim \mathrm{~N}(3.75,0.1406)$
Normalising gives
$\mathrm{P}(\bar{X} \leqslant 4) \approx 0.7475$ (4 d.p.)

4 a Let X be the number of thunderstorms hitting the town each month, then $X \sim \operatorname{Po}(3)$
$\mathrm{P}(X=4)=\frac{\mathrm{e}^{-3} 3^{4}}{4!}=0.1680(4$ d.p.)
b $\mathrm{E}(X)=\operatorname{Var}(X)=3$
By the central limit theorem $\bar{X} \approx \sim \mathrm{~N}\left(3, \frac{3}{12}\right)$, i.e. $\bar{X} \approx \sim \mathrm{~N}(3,0.25)$
$\mathrm{P}(\bar{X} \leqslant 2.5) \approx 0.1587$ (4 d.p.)
$5 \mathrm{E}(X)=\frac{a+b}{2}$

$$
\begin{aligned}
= & \frac{(a-3)+(3 a+5)}{2} \\
& =2 a+1 \\
\operatorname{Var}(X) & =\frac{1}{12}(b-a)^{2} \\
& =\frac{1}{12}[(3 a+5)-(a-3)]^{2} \\
& =\frac{1}{12}(2 a+8)^{2} \\
& =\frac{4}{12}(a+4)^{2} \\
& =\frac{(a+4)^{2}}{3}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& X \sim N\left(2 a+1, \frac{\frac{(a+4)^{2}}{3}}{40}\right) \\
& X \sim N\left(2 a+1, \frac{(a+4)^{2}}{120}\right)
\end{aligned}
$$

6 a Let the discrete random variable C be the number of calls received by the telephonist in the fiveminute period before her break, then $C \sim \operatorname{Po}(10)$. Let T be the total number of calls received in this period for the 30 days the telephonist records the calls, then $T=30 \bar{C}$
By the central limit theorem $\bar{C} \approx \sim \mathrm{~N}\left(10, \frac{10}{30}\right)$

$$
\mathrm{P}(T>350)=\mathrm{P}\left(\bar{C}>\frac{350}{30}\right)=1-\mathrm{P}\left(\bar{C}<\frac{350}{30}\right) \approx 1-0.9981=0.0019 \text { (4 d.p.) }
$$

b $\mathrm{P}(C<9) \approx 0.0416$ (4 d.p.)

